Home
Class 11
MATHS
If f(x+2y,x-2y)=xy, then f(x, y) equals...

If `f(x+2y,x-2y)=xy`, then f(x, y) equals

A

`(x^2-y^2)/2`

B

`(x^2+y^2)/2`

C

`(x^2-y^2)/4`

D

`(x^2-y^2)/8`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x+2y , x-2y)=x y , then f(x,y) equals

If f(x) = x/(x - 1) = 1/y , then f(y) =

If f is a real valued differentiable function satisfying : |f(x)-f(y)|le(x-y)^(2),x,yinR and f(0)=0 , then f(1) equals :

If log (x+y) = 2xy, then y^(')(0) =

If (x^2+y^2)dy=xy dxand y (1) = 1 . If f(x_0)=e, then x_0 is equal to :

Let f be a function satisfying f(x+y)=f(x) + f(y) for all x,y in R . If f (1)= k then f(n), n in N is equal to

If y is a function of x and log(x+y)-2xy=0 , then y'(0) is equal to :

If y=f((3x+4)/(5x+6))andf'(x)=tanx^(2), then (dy)/(dx) is equal to

If f(x+y)=f(x)f(y) and f(x)=1+"xg(x) G(x)" , where lim_(xto0)g(x)=a and lim_(xto0)" G(x)=b . Then f'(x) is equal to :