Home
Class 11
MATHS
If f(x)=cos(logx), then f(x^2)f(y^2)-(1)...

If `f(x)=cos(logx)`, then
`f(x^2)f(y^2)-(1)/(2)[f((x^2)/(y^2))+f(x^(2)y^(2))]` has the value :

A

`-2`

B

0

C

`1/2`

D

1

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=cos(logx) , then : f(x).f(y)-(1)/(2)(f((x)/(y))+f(xy)) has the value :

If f(x) = cos(log x) , then f((1)/(x)) f((1)/(y) - (1)/(2)[f((x)/(y)) + f(xy)] =

if f(x) = cos (log x) then the value of f(x) f(y)-(1//2) [f(x//y) + f(xy) ] is

If f(x) = x/(x - 1) = 1/y , then f(y) =

If f '(x) = cos (log x) and y = f((2x-3)/(2x+5)) then dy/dx =

If f(x) = cos^(-1) [(1-(log x)^(2))/(1+(log x)^(2))] , then f^(')(e) =

If f(x)= x^(2)+x-1 then the value of f(1) is

If f(x) = x +2, then f^(')(f(x)) at x = 4 is

Let f(x)=|(cos x,e^(x^2) , 2x cos^2x/2),(x^2, sec x, sinx+x^3),(1,2,x+tan x)| then the value of int_(-pi/2)^(pi/2)(x^2+1)(f(x)+f''(x))dx