Home
Class 11
MATHS
The range of sin^2 x +cos^4 x is...

The range of `sin^2 x +cos^4 x` is

A

`[3/4,1]`

B

[0,1]

C

`[0,3/4]`

D

`[(-3)/4 ,1/4]`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin x+sin ^(2) x=1 then the value of cos ^(2) x+cos ^(4) x is

The maximum of 4 sin^(2)x + 3 cos^(2)x is

The number of distinct real roots of [[sin x , cos x , cos x ],[cos x , sin x , cos x],[cos x , cos x , sin x]] =0 in the interval -(pi)/(4) le x le (pi)/(4) is

If exp [(sin^(2)x+sin^(4) x +sin^(6)x+.... oo)" In" 2] satisfies the equation y^(2)-9y+8=0 , then the value of (cos x )/( cos x+ sin x ),0 lt x lt (pi)/(2) , is

If exp [(sin^(2)x+sin^(4) x +sin^(6)x+.... oo)" In" 2] satisfies the equation y^(2)-9y+8=0 , then the value of (cos x )/( cos x+ sin x ),0 lt x lt (pi)/(2) , is

The value of (cos^(4)x+cos^(2)x sin^(2) x + sin^(2)x)/(cos^(2)x+ sin^(2) x cos^(2) x + sin^(4)x) is ____________

The maximum of 4sin^(2)x+3cos^(2)x is

Solve the equation sin x + cos x -2sqrt2 sin x cos x =0

The function f(x) = sin^(4)x + cos^(4) x increases if

Maximum value of 6 sin x cos x+4 cos 2 x