Home
Class 11
MATHS
If f(x)=(8^(1+logx))/(x^(log^8)) then f(...

If `f(x)=(8^(1+logx))/(x^(log^8))` then f(2007)=

A

log (2007)

B

(2007) log8

C

8

D

2007

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = 3^1+logx//x^log3 , then f(2005) is

Let f(x)=(logx)/(x)+log51 , then f(x) is :

If f(x)= log_(x^(2))(log x) , then f(x) at x=e is

If f(x)=log_(x^(2))(log_(e)x) , then f'(x) at x=e is

If f(x) = log_(a) (log_(a)x) , then f^(')(x) is

If f(x)=8x^(3), g(x)=x^(1//3) , then fog (x) is

If f(x) = 8x^(3), g(x) = x^((1//3)) , then fog(x) is

If f(x) = cos^(-1) [(1-(log x)^(2))/(1+(log x)^(2))] , then f^(')(e) =