Home
Class 11
MATHS
The locus of the point (Cot theta+Cos th...

The locus of the point `(Cot theta+Cos theta, Cot theta-Cos theta)` where `o le theta lt 2pi` is

A

`x^2-y^2=4xy`

B

`x^2+y^2=4xy`

C

`(x^2+y^2)^2=16xy`

D

`(x^2-y^2)^2=16xy`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

cos theta . Cosec theta = cot theta

The locus of the point x=a(cos theta+sin theta) y=b (cos theta-sin theta) is

The locus of the point x=a cos theta, y=b sin theta is

(sin theta+cos theta)(tan theta+cot theta)=

The locus of the point x=a+b cos theta y=b+a sin theta is

The locus of the point (a cos ^(3) theta, a sin ^(3) theta) is

The value of tan theta cot theta is:

(sin 2 theta)/(1-cos 2 theta)=cot theta

Show that cot theta +tan theta =sec theta cosec theta

Solve sin^(2) theta-cos theta=1/4, 0 le theta le 2pi .