Home
Class 11
MATHS
The locus of the centroid of the triangl...

The locus of the centroid of the triangle with vertices at `(a cos theta, a sin theta),(b sin theta-b cos theta)` and (1,0) is (Here `theta` is a parameter)

A

`(3x-1)^2+9y^2=a^2-b^2`

B

`(3x-1)^2+9y^2=a^2+b^2`

C

`(3x+1)^2+9y^2=a^2-b^2`

D

`(3x+1)^2+9y^2=a^2+b^2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

((cos theta+i sin theta)/(sin theta+i cos theta))^(4)=

(1-cos theta)/(sin theta)=(sin theta)/(1+cos theta)

(1-cos theta)/(sin theta)=(sin theta)/(1+cos theta)

If a cos theta-b sin theta=c then a sin theta+b cos theta=

x = a cos theta, y = b sin theta .

If acos theta+b sin theta=p and a sin theta-b cos theta=q then

(3 cos theta+cos 3 theta)/(3 sin theta-sin 3 theta)=

Write the inverse of the matrix {:|(cos theta,sin theta),(-sin theta,cos theta)| .

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .

The distance between (a cos theta + b sin theta ,0) and (0,a sin theta - bcos theta ) is