Home
Class 8
MATHS
Prove that : ( 2^(x-1) + 2^x ) / ( 2...

Prove that :

`( 2^(x-1) + 2^x ) / ( 2^( x+1 ) - 2^x )` = `3/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : cos (2 sin^(-1) x) = 1-2x^2

Prove that : tan^(-1)x +tan^(-1). (2x)/(1-x^(2)) = tan^(-1) . (3x-x^(3))/(1-3x^(2)) , |x| lt 1/(sqrt(3))

Prove that tan^(-1) {(x)/(a + sqrt(a^(2) - x^(2)))} = (1)/(2) sin^(-1).(x)/(a), -a lt x lt a

Prove that tan (2 tan^(-1) x ) = 2 tan (tan^(-1) x + tan^(-1) x^(3)) .

Prove that: sin[tan^(-1)((1 - x^2)/(2x)) + cos^(-1) ((1 - x^2)/(1 + x^2))] = 1

Prove that cos^(-1){(1+x)/(2)}=(cos^(-1)x)/(2)

Prove that,x^(2)-1>2x ln x>4(x-1)-2ln x for x>1

Prove that tan(2tan^(-1)x)=2tan(tan^(-1)x+tan^(-1)x^(3))

Prove that sqrt(x^2+2x+1)-sqrt(x^2-2x+1)={-2, x 1

Solve for x: 4^(x) - 3^(x-1/2)=3^(x+1/2)-2^(2x-1) .