Home
Class 11
CHEMISTRY
Calculate the radius of Bohr's fifht orb...

Calculate the radius of Bohr's fifht orbit for hydrogen atom.

Promotional Banner

Similar Questions

Explore conceptually related problems

Calculate the radius of third orbit of hydrogen atom. Compare it with the same radius of second Bohr orbit of singly ionised helium atom.

The gravitational attraction between electron and proton in a hydrogen atom is weaker than the coulomb attraction by a factor of about 10^ -40 . An alternative way of looking at this fact is to estimate the radius of the first Bohr orbit of a hydrogen atom if the electron and proton were bound by gravitational attraction. You will find the answer interesting.

Bohr's model of hydrogen atom In order to explain the stability of atom and its line spectra, Bohr gave a set of postulates: An electron in an atom revolves in certain circular orbit around the nucleus. These are the orbits for which mvr=(nh)/(2pi) In these allowed orbits, the electron does not radiate energy. When an electron jumps from higher energy level E_(n_2) to lower energy orbit E_(n_1) , radiation is emittd and frequency of emitted electron is given by v=(E_(n_2)-E_(n_1))/h . Further the radius of the n^(th) orbit of hydrogen atom is r=(n^2h^24piepsilon_0)/(4pi^2me^2) and energy of the n^(th) orbit is given by E_n=-13.6/n^2 eV . When hydrogen atom is the first excited level, it radius is:,

Bohr's model of hydrogen atom In order to explain the stability of atom and its line spectra, Bohr gave a set of postulates: An electron in an atom revolves in certain circular orbit around the nucleus. These are the orbits for which mvr=(nh)/(2pi) In these allowed orbits, the electron does not radiate energy. When an electron jumps from higher energy level E_(n_2) to lower energy orbit E_(n_1) , radiation is emittd and frequency of emitted electron is given by v=(E_(n_2)-E_(n_1))/h . Further the radius of the n^(th) orbit of hydrogen atom is r=(n^2h^24piepsilon_0)/(4pi^2me^2) and energy of the n^(th) orbit is given by E_n=-13.6/n^2 eV . What would happen, if the electron in an atom is stationary?

Bohr's model of hydrogen atom In order to explain the stability of atom and its line spectra, Bohr gave a set of postulates: An electron in an atom revolves in certain circular orbit around the nucleus. These are the orbits for which mvr=(nh)/(2pi) In these allowed orbits, the electron does not radiate energy. When an electron jumps from higher energy level E_(n_2) to lower energy orbit E_(n_1) , radiation is emittd and frequency of emitted electron is given by v=(E_(n_2)-E_(n_1))/h . Further the radius of the n^(th) orbit of hydrogen atom is r=(n^2h^24piepsilon_0)/(4pi^2me^2) and energy of the n^(th) orbit is given by E_n=-13.6/n^2 eV . The ground state energy of hydroen atom is -13.6 eV. The KE and PE of the electron in this state are

Bohr's model of hydrogen atom In order to explain the stability of atom and its line spectra, Bohr gave a set of postulates: An electron in an atom revolves in certain circular orbit around the nucleus. These are the orbits for which mvr=(nh)/(2pi) In these allowed orbits, the electron does not radiate energy. When an electron jumps from higher energy level E_(n_2) to lower energy orbit E_(n_1) , radiation is emittd and frequency of emitted electron is given by v=(E_(n_2)-E_(n_1))/h . Further the radius of the n^(th) orbit of hydrogen atom is r=(n^2h^24piepsilon_0)/(4pi^2me^2) and energy of the n^(th) orbit is given by E_n=-13.6/n^2 eV . The angular momentum of the orbital electron is integarl multiple of

Read the following statements and choose the correct option. (I) If the radius of the first Bohr orbit of hydrogen atom us redis of 2^(nd) orbit of Li^(2+) would be 4r (II) For s-orbital electron , the orbital angular momentum is zero

The radius of 2nd Bohr's orbit of an electron in H - atom is 2.12 overset @A .Calculate th radius of 3 rd orbit of the same atom.

Fill ups: The radius of first orbit of hydrogen atom is called………………..radius.