Home
Class 11
MATHS
solve for x log(2)(9-2^(x))=10^(log(10)...

solve for x `log_(2)(9-2^(x))=10^(log_(10)(3-x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

log_(2)(9-2^(x))=10^(log(3-x)) , solve for x.

Number of solutions of equation log_(2)(9-2)^(x)=10^(log10(3-x)) , is

Solve for x.x^(log_(10)x+2)=10^(log_(10)x+2)

Solve the following inequation . (xvii) log_2(9-2^x)le10^(log_10(3-x))

Solve for x: a) (log_(10)(x-3))/(log_(10)(x^(2)-21)) = 1/2 b) log(log x)+log(logx^(3)-2)= 0, where base of log is 10. c) log_(x)2. log_(2x)2 = log_(4x)2 d) 5^(logx)+5x^(log5)=3(a gt 0), where base of log is 3. e) If 9^(1+logx)-3^(1+logx)-210=0 , where base of log is 3.

Solve for x, (a) (log_(10)(x-3))/(log_(10)(x^(2)-21))=(1)/(2),(b)log(log x)+log(log x^(3)-2)=0; where base of log is 10 everywhere.

Solve for x:x+(log)_(10)(1+2^(x))=x log_(10)5+log_(10)6

(x-2)^(log_(10)^(2)(x-2)+log_(10)(x-2)^(5)-12)=10^(2log_(10)(x-2))

Find the value of x given that 2log_(10)(2^(x)-1)=log_(10)2+log_(10)(2^(x)+3)

If 4^(log_(9)(3))+9^(log_(2)(4))=10^(log_(x)(83)) then x=