Home
Class 14
MATHS
The positive value of x in the equation ...

The positive value of x in the equation `(24)/(18-x)-(24)/(18+x)=1` is :

A

5

B

6

C

9

D

11

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{24}{18-x} - \frac{24}{18+x} = 1\), we will follow these steps: ### Step 1: Find a common denominator The common denominator for the fractions \(\frac{24}{18-x}\) and \(\frac{24}{18+x}\) is \((18-x)(18+x)\). ### Step 2: Rewrite the equation Rewriting the equation with the common denominator, we have: \[ \frac{24(18+x) - 24(18-x)}{(18-x)(18+x)} = 1 \] ### Step 3: Simplify the numerator Now, simplify the numerator: \[ 24(18+x) - 24(18-x) = 24 \cdot 18 + 24x - 24 \cdot 18 + 24x = 48x \] Thus, the equation becomes: \[ \frac{48x}{(18-x)(18+x)} = 1 \] ### Step 4: Cross-multiply Cross-multiplying gives: \[ 48x = (18-x)(18+x) \] ### Step 5: Expand the right side Expanding the right side: \[ (18-x)(18+x) = 18^2 - x^2 = 324 - x^2 \] So, we have: \[ 48x = 324 - x^2 \] ### Step 6: Rearrange the equation Rearranging gives: \[ x^2 + 48x - 324 = 0 \] ### Step 7: Use the quadratic formula To solve for \(x\), we can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \(a = 1\), \(b = 48\), and \(c = -324\). ### Step 8: Calculate the discriminant Calculating the discriminant: \[ b^2 - 4ac = 48^2 - 4 \cdot 1 \cdot (-324) = 2304 + 1296 = 3600 \] ### Step 9: Solve for \(x\) Now substituting back into the quadratic formula: \[ x = \frac{-48 \pm \sqrt{3600}}{2 \cdot 1} = \frac{-48 \pm 60}{2} \] Calculating the two possible values: 1. \(x = \frac{12}{2} = 6\) 2. \(x = \frac{-108}{2} = -54\) (not a positive value) ### Conclusion The positive value of \(x\) is \(6\).
Promotional Banner