Home
Class 14
MATHS
If 2^x=4^y=8^z and 1/(2x)+1/(4y)+1/(4z)=...

If `2^x=4^y=8^z` and `1/(2x)+1/(4y)+1/(4z)=4`, then value of x is :

A

A)`7/(16)`

B

B)`9/(16)`

C

C)`7/(32)`

D

D)`9/(48)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equations: 1. **Given Equations**: \[ 2^x = 4^y = 8^z \] 2. **Expressing in terms of the same base**: We can express \(4\) and \(8\) in terms of base \(2\): \[ 4 = 2^2 \quad \text{and} \quad 8 = 2^3 \] Therefore, we can rewrite the equations as: \[ 2^x = (2^2)^y = 2^{2y} \quad \text{and} \quad 2^x = (2^3)^z = 2^{3z} \] 3. **Setting the exponents equal**: Since the bases are the same, we can equate the exponents: \[ x = 2y \quad \text{and} \quad x = 3z \] 4. **Expressing \(y\) and \(z\) in terms of \(x\)**: From \(x = 2y\), we can express \(y\) as: \[ y = \frac{x}{2} \] From \(x = 3z\), we can express \(z\) as: \[ z = \frac{x}{3} \] 5. **Substituting into the second equation**: Now we substitute \(y\) and \(z\) into the equation: \[ \frac{1}{2x} + \frac{1}{4y} + \frac{1}{4z} = 4 \] Substituting \(y\) and \(z\): \[ \frac{1}{2x} + \frac{1}{4 \cdot \frac{x}{2}} + \frac{1}{4 \cdot \frac{x}{3}} = 4 \] 6. **Simplifying the fractions**: This simplifies to: \[ \frac{1}{2x} + \frac{1}{2x} + \frac{3}{4x} = 4 \] Combining the terms: \[ \frac{1}{2x} + \frac{1}{2x} + \frac{3}{4x} = \frac{2}{2x} + \frac{3}{4x} = \frac{4}{4x} + \frac{3}{4x} = \frac{7}{4x} \] 7. **Setting the equation**: Now we have: \[ \frac{7}{4x} = 4 \] 8. **Cross-multiplying**: Cross-multiplying gives us: \[ 7 = 16x \] 9. **Solving for \(x\)**: Finally, solving for \(x\): \[ x = \frac{7}{16} \] Thus, the value of \(x\) is: \[ \boxed{\frac{7}{16}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If2^(x)=4^(y)=8^(z) and ((1)/(2x)+(1)/(4y)+(1)/(6z))=(24)/(7), then z=?(7)/(48)b)(48)/(7)c)(44)/(7)}

If 2^(x)=4^(y)=8^(z) and ((1)/(2x)+(1)/(4y)+(1)/(6z))=(24)/(7) , then find the value of z.

If 2^(x) = 4^(y) = 8^(z) and xyz = 288 , the value of 1/(2x) + 1/(4y) + 1/(8z) is

If x = 2a- 1, y = (2a - 2) and z =3 - 4a, then the value of x ^(3) + y ^(3) + z ^(3) will be :

If the line (x-2)/-1=(y+2)/1=(z+k)/4 is one of the angle bisector of the lines x/1=y/-2=z/3 and x/-2=y/3=z/1 then the value of k is