Home
Class 14
MATHS
Find the value of: [(3^(-7)div3^(-10))x...

Find the value of:
`[(3^(-7)div3^(-10))xx3^(-5)]//[((-2)/3)^(-2)]^2`

A

`(742)/(16)`

B

`(729)/(16)`

C

`(16)/(729)`

D

`(16)/(829)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{(3^{-7} \div 3^{-10}) \times 3^{-5}}{((-2/3)^{-2})^2}\), we will follow the properties of exponents step by step. ### Step 1: Simplify the numerator We start with the numerator: \[ 3^{-7} \div 3^{-10} \] Using the property of exponents that states \(a^m \div a^n = a^{m-n}\): \[ 3^{-7} \div 3^{-10} = 3^{-7 - (-10)} = 3^{-7 + 10} = 3^{3} \] ### Step 2: Multiply by \(3^{-5}\) Now we multiply \(3^{3}\) by \(3^{-5}\): \[ 3^{3} \times 3^{-5} = 3^{3 + (-5)} = 3^{-2} \] ### Step 3: Simplify the denominator Next, we simplify the denominator: \[ ((-2/3)^{-2})^2 \] Using the property \((a^m)^n = a^{m \cdot n}\): \[ ((-2/3)^{-2})^2 = (-2/3)^{-4} \] Now, applying the property of negative exponents: \[ (-2/3)^{-4} = \frac{1}{(-2/3)^{4}} = \frac{1}{\left(\frac{16}{81}\right)} = \frac{81}{16} \] ### Step 4: Combine the results Now we can combine the results from the numerator and denominator: \[ \frac{3^{-2}}{(-2/3)^{-4}} = \frac{3^{-2}}{\frac{81}{16}} = 3^{-2} \times \frac{16}{81} \] Using the property \(a^{-m} = \frac{1}{a^m}\): \[ 3^{-2} = \frac{1}{3^2} = \frac{1}{9} \] Thus, we have: \[ \frac{1}{9} \times \frac{16}{81} = \frac{16}{729} \] ### Final Answer The final value of the expression is: \[ \frac{16}{729} \]
Promotional Banner