Home
Class 14
MATHS
Find the value of sqrt(36.1 xx 102.4)...

Find the value of `sqrt(36.1 xx 102.4)`

A

A)58.8

B

B)60.8

C

C)60.2

D

D)62.2

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sqrt{36.1 \times 102.4} \), we can follow these steps: ### Step 1: Rewrite the numbers without decimals We can express \( 36.1 \) and \( 102.4 \) in a way that makes calculations easier. \[ 36.1 = \frac{361}{10} \quad \text{and} \quad 102.4 = \frac{1024}{10} \] ### Step 2: Multiply the two fractions Now, we can multiply these two fractions: \[ 36.1 \times 102.4 = \left(\frac{361}{10}\right) \times \left(\frac{1024}{10}\right) = \frac{361 \times 1024}{100} \] ### Step 3: Calculate \( 361 \times 1024 \) Next, we need to calculate \( 361 \times 1024 \). \[ 361 \times 1024 = 369344 \] ### Step 4: Substitute back into the square root Now we substitute back into the square root: \[ \sqrt{36.1 \times 102.4} = \sqrt{\frac{369344}{100}} = \frac{\sqrt{369344}}{\sqrt{100}} \] ### Step 5: Simplify the square root We know that \( \sqrt{100} = 10 \). Now we need to find \( \sqrt{369344} \). Calculating \( \sqrt{369344} \): \[ \sqrt{369344} = 608 \] ### Step 6: Final calculation Now we can substitute back: \[ \frac{\sqrt{369344}}{\sqrt{100}} = \frac{608}{10} = 60.8 \] ### Conclusion Thus, the value of \( \sqrt{36.1 \times 102.4} \) is: \[ \boxed{60.8} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of sqrt(-16) xx sqrt(-25) .

Find the value of sqrt(18)xx sqrt(3)

Find the value of (sqrt(-1))^(4n + 1) .

Find the value of 2 xx { ( 3.6 xx 0.48 xx 2.50)/( 0.12 xx 0.09 xx 0.5) }

Find the value of 1/(sqrt(9) - sqrt(4)) .

Find the value of 1/(sqrt9 - sqrt4)

Find the value of sqrt(1/4 ) times sqrt(3/4)