Home
Class 14
MATHS
Find the volume of the right circular co...

Find the volume of the right circular cone with radius 3.5 cm & height 12 cm ?

A

`308 cm^3`

B

`154 cm^3`

C

`77 cm^3`

D

`231 cm^3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the volume of a right circular cone, we can use the formula: \[ V = \frac{1}{3} \pi r^2 h \] where: - \( V \) is the volume, - \( r \) is the radius of the base of the cone, - \( h \) is the height of the cone. ### Step-by-Step Solution: 1. **Identify the given values**: - Radius \( r = 3.5 \) cm - Height \( h = 12 \) cm 2. **Convert the radius into a fraction**: - \( r = 3.5 \) cm can be expressed as \( \frac{7}{2} \) cm. 3. **Substitute the values into the volume formula**: \[ V = \frac{1}{3} \pi \left(\frac{7}{2}\right)^2 (12) \] 4. **Calculate \( r^2 \)**: \[ \left(\frac{7}{2}\right)^2 = \frac{49}{4} \] 5. **Substitute \( r^2 \) back into the volume formula**: \[ V = \frac{1}{3} \pi \left(\frac{49}{4}\right) (12) \] 6. **Multiply \( \frac{49}{4} \) by \( 12 \)**: \[ \frac{49 \times 12}{4} = \frac{588}{4} = 147 \] 7. **Now substitute this back into the volume formula**: \[ V = \frac{1}{3} \pi (147) \] 8. **Use \( \pi \approx \frac{22}{7} \)** for calculation**: \[ V = \frac{1}{3} \times \frac{22}{7} \times 147 \] 9. **Calculate \( \frac{22 \times 147}{21} \)**: - First, simplify: \[ 147 \div 21 = 7 \] - Then calculate: \[ V = \frac{22 \times 7}{1} = 154 \text{ cm}^3 \] ### Final Answer: The volume of the right circular cone is \( 154 \text{ cm}^3 \).
Promotional Banner