Home
Class 14
MATHS
If x : y = 3 : 4 then find the value of ...

If `x : y = 3 : 4` then find the value of `(2x+3y)/(3x+4y)`

A

`9/25`

B

`18/25`

C

`7/18`

D

`17/25`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( x : y = 3 : 4 \) and we need to find the value of \( \frac{2x + 3y}{3x + 4y} \), we can follow these steps: ### Step 1: Express \( x \) in terms of \( y \) From the ratio \( x : y = 3 : 4 \), we can express \( x \) in terms of \( y \): \[ x = \frac{3}{4}y \] ### Step 2: Substitute \( x \) in the expression Now, substitute \( x \) in the expression \( \frac{2x + 3y}{3x + 4y} \): \[ \frac{2\left(\frac{3}{4}y\right) + 3y}{3\left(\frac{3}{4}y\right) + 4y} \] ### Step 3: Simplify the numerator Calculate the numerator: \[ 2\left(\frac{3}{4}y\right) + 3y = \frac{6}{4}y + 3y = \frac{6}{4}y + \frac{12}{4}y = \frac{18}{4}y = \frac{9}{2}y \] ### Step 4: Simplify the denominator Now, calculate the denominator: \[ 3\left(\frac{3}{4}y\right) + 4y = \frac{9}{4}y + 4y = \frac{9}{4}y + \frac{16}{4}y = \frac{25}{4}y \] ### Step 5: Combine the results Now we can combine the simplified numerator and denominator: \[ \frac{\frac{9}{2}y}{\frac{25}{4}y} \] ### Step 6: Cancel \( y \) and simplify the fraction The \( y \) in the numerator and denominator cancels out: \[ \frac{\frac{9}{2}}{\frac{25}{4}} = \frac{9}{2} \times \frac{4}{25} = \frac{36}{50} \] ### Step 7: Further simplify the fraction Now simplify \( \frac{36}{50} \): \[ \frac{36}{50} = \frac{18}{25} \] ### Final Answer Thus, the value of \( \frac{2x + 3y}{3x + 4y} \) is: \[ \frac{18}{25} \]
Promotional Banner