Home
Class 14
MATHS
2.33xx2.33xx+0.33xx0.33xx-0.66xx2.33 is ...

`2.33xx2.33xx+0.33xx0.33xx-0.66xx2.33` is equal to:

A

2.66

B

0.4

C

4

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 2.33 \times 2.33 + 0.33 \times 0.33 - 0.66 \times 2.33 \), we can follow these steps: ### Step 1: Rewrite the Expression We start with the expression: \[ 2.33 \times 2.33 + 0.33 \times 0.33 - 0.66 \times 2.33 \] ### Step 2: Recognize the Terms Notice that \( 0.66 \) can be rewritten as \( 2 \times 0.33 \). Thus, we can rewrite the expression as: \[ 2.33^2 + 0.33^2 - (2 \times 0.33 \times 2.33) \] ### Step 3: Apply the Identity We can recognize that this expression resembles the expansion of the square of a binomial. The identity we can use is: \[ (A - B)^2 = A^2 + B^2 - 2AB \] where \( A = 2.33 \) and \( B = 0.33 \). ### Step 4: Substitute into the Identity Using the values of \( A \) and \( B \): \[ (2.33 - 0.33)^2 = 2.33^2 + 0.33^2 - 2 \times 0.33 \times 2.33 \] ### Step 5: Simplify Now, calculate \( 2.33 - 0.33 \): \[ 2.33 - 0.33 = 2.00 \] Thus, we have: \[ (2.00)^2 = 2.33^2 + 0.33^2 - 0.66 \times 2.33 \] ### Step 6: Calculate the Square Calculating \( (2.00)^2 \): \[ (2.00)^2 = 4.00 \] ### Conclusion The expression simplifies to: \[ 2.33^2 + 0.33^2 - 0.66 \times 2.33 = 4.00 \] Thus, the answer is: \[ \boxed{4} \]
Promotional Banner