Home
Class 14
MATHS
If x+1/x=p, then find the value of x^2+1...

If `x+1/x=p`, then find the value of `x^2+1/x^2`

A

`P^2`

B

`P^2+2`

C

`P^2-2`

D

`P^2-4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( x^2 + \frac{1}{x^2} \) given that \( x + \frac{1}{x} = p \), we can follow these steps: ### Step 1: Square the given equation Start with the equation: \[ x + \frac{1}{x} = p \] Now, square both sides: \[ \left(x + \frac{1}{x}\right)^2 = p^2 \] ### Step 2: Expand the squared equation Using the formula \( (A + B)^2 = A^2 + B^2 + 2AB \), we can expand the left side: \[ x^2 + 2\left(x \cdot \frac{1}{x}\right) + \frac{1}{x^2} = p^2 \] This simplifies to: \[ x^2 + 2 + \frac{1}{x^2} = p^2 \] ### Step 3: Rearrange to find \( x^2 + \frac{1}{x^2} \) Now, isolate \( x^2 + \frac{1}{x^2} \): \[ x^2 + \frac{1}{x^2} = p^2 - 2 \] ### Final Answer Thus, the value of \( x^2 + \frac{1}{x^2} \) is: \[ \boxed{p^2 - 2} \]
Promotional Banner