Home
Class 14
MATHS
The value of 1/(sqrt40+sqrt20+sqrt10-sqr...

The value of `1/(sqrt40+sqrt20+sqrt10-sqrt80)` is equal to

A

`1/70(3sqrt10+2sqrt5)`

B

`1/70(3sqrt10-2sqrt5)`

C

`(-1)/70(3sqrt10+2sqrt5)`

D

`1/70(2sqrt5-3sqrt10)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{1}{\sqrt{40} + \sqrt{20} + \sqrt{10} - \sqrt{80}} \), we will simplify the terms in the denominator step by step. ### Step 1: Simplify each square root term 1. \( \sqrt{40} = \sqrt{4 \times 10} = 2\sqrt{10} \) 2. \( \sqrt{20} = \sqrt{4 \times 5} = 2\sqrt{5} \) 3. \( \sqrt{10} = \sqrt{10} \) 4. \( \sqrt{80} = \sqrt{16 \times 5} = 4\sqrt{5} \) ### Step 2: Substitute the simplified terms back into the expression Now, substitute these simplified terms back into the denominator: \[ \sqrt{40} + \sqrt{20} + \sqrt{10} - \sqrt{80} = 2\sqrt{10} + 2\sqrt{5} + \sqrt{10} - 4\sqrt{5} \] ### Step 3: Combine like terms Combine the terms: \[ (2\sqrt{10} + \sqrt{10}) + (2\sqrt{5} - 4\sqrt{5}) = 3\sqrt{10} - 2\sqrt{5} \] ### Step 4: Rewrite the expression Now we can rewrite the expression: \[ \frac{1}{3\sqrt{10} - 2\sqrt{5}} \] ### Step 5: Rationalize the denominator To rationalize the denominator, multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{1 \cdot (3\sqrt{10} + 2\sqrt{5})}{(3\sqrt{10} - 2\sqrt{5})(3\sqrt{10} + 2\sqrt{5})} \] ### Step 6: Calculate the denominator using the difference of squares Using the formula \( (a - b)(a + b) = a^2 - b^2 \): \[ (3\sqrt{10})^2 - (2\sqrt{5})^2 = 9 \cdot 10 - 4 \cdot 5 = 90 - 20 = 70 \] ### Step 7: Write the final expression Now we can write the final expression: \[ \frac{3\sqrt{10} + 2\sqrt{5}}{70} \] ### Final Answer Thus, the value of \( \frac{1}{\sqrt{40} + \sqrt{20} + \sqrt{10} - \sqrt{80}} \) is: \[ \frac{3\sqrt{10} + 2\sqrt{5}}{70} \]
Promotional Banner