Home
Class 14
MATHS
Find the value of sqrt(72+sqrt(72+sqrt...

Find the value of
`sqrt(72+sqrt(72+sqrt(72+.....oo`

A

6

B

8

C

9

D

12

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \( \sqrt{72 + \sqrt{72 + \sqrt{72 + \ldots}}} \), we can follow these steps: ### Step 1: Set up the equation Let \( x \) be the value of the infinite nested radical. Therefore, we can write: \[ x = \sqrt{72 + \sqrt{72 + \sqrt{72 + \ldots}}} \] This implies: \[ x = \sqrt{72 + x} \] ### Step 2: Square both sides To eliminate the square root, we square both sides of the equation: \[ x^2 = 72 + x \] ### Step 3: Rearrange the equation Rearranging the equation gives us: \[ x^2 - x - 72 = 0 \] ### Step 4: Solve the quadratic equation Now we can solve the quadratic equation using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = -1 \), and \( c = -72 \). Plugging in these values, we get: \[ x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot (-72)}}{2 \cdot 1} \] \[ x = \frac{1 \pm \sqrt{1 + 288}}{2} \] \[ x = \frac{1 \pm \sqrt{289}}{2} \] \[ x = \frac{1 \pm 17}{2} \] ### Step 5: Calculate the possible values Calculating the two possible values: 1. \( x = \frac{18}{2} = 9 \) 2. \( x = \frac{-16}{2} = -8 \) Since \( x \) represents a length (as it is derived from a square root), we discard the negative value. ### Final Answer Thus, the value of \( \sqrt{72 + \sqrt{72 + \sqrt{72 + \ldots}}} \) is: \[ \boxed{9} \]
Promotional Banner