Home
Class 14
MATHS
13 1/2-[4 1/2-{3-(2-1/2)}] is equal to:...

`13 1/2-[4 1/2-{3-(2-1/2)}]` is equal to:

A

`9 1/2`

B

`10 1/2`

C

`10 3/4`

D

`13 1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 13 \frac{1}{2} - [4 \frac{1}{2} - \{3 - (2 - \frac{1}{2})\}] \), we will follow the order of operations (BODMAS/BIDMAS). ### Step-by-Step Solution: 1. **Convert Mixed Numbers to Improper Fractions**: - \( 13 \frac{1}{2} = \frac{27}{2} \) (since \( 13 \times 2 + 1 = 27 \)) - \( 4 \frac{1}{2} = \frac{9}{2} \) (since \( 4 \times 2 + 1 = 9 \)) So, the expression becomes: \[ \frac{27}{2} - \left[\frac{9}{2} - \{3 - (2 - \frac{1}{2})\}\right] \] 2. **Evaluate the Innermost Bracket**: - Calculate \( 2 - \frac{1}{2} = \frac{4}{2} - \frac{1}{2} = \frac{3}{2} \) Now substitute this back into the expression: \[ \frac{27}{2} - \left[\frac{9}{2} - \{3 - \frac{3}{2}\}\right] \] 3. **Evaluate the Next Bracket**: - Calculate \( 3 - \frac{3}{2} = \frac{6}{2} - \frac{3}{2} = \frac{3}{2} \) Now substitute this back into the expression: \[ \frac{27}{2} - \left[\frac{9}{2} - \frac{3}{2}\right] \] 4. **Simplify the Expression Inside the Brackets**: - Calculate \( \frac{9}{2} - \frac{3}{2} = \frac{6}{2} = 3 \) Now substitute this back into the expression: \[ \frac{27}{2} - 3 \] 5. **Convert 3 to a Fraction**: - Convert \( 3 \) to a fraction: \( 3 = \frac{6}{2} \) Now the expression becomes: \[ \frac{27}{2} - \frac{6}{2} = \frac{27 - 6}{2} = \frac{21}{2} \] 6. **Final Result**: - The final answer in improper fraction form is \( \frac{21}{2} \). - If needed in mixed number form, it can be expressed as \( 10 \frac{1}{2} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

2^(1/2)*4^(3/4) is equal to

2. | [1 ,1 ,1 ],[4 ,3 ,2], [4^(2) ,3^(2), 2^(2)] | is equal to

(1+1/(2!)+2/(3!)+(2^(2))/(4!)+(2^(2))/(5!)+...)/(1 + 1/(2!)+1/(4!)+1/(6!)+...) is equal to

If 2a - (1)/(2a) = 3, then 16 a ^(4) + (1)/(16 a ^(4)) is equal to

If A=[(3,2,4),(1,2,1),(3,2,6)] and A_(ij) are the cofactors of a_(ij) , then a_(11)A_(11)+a_(12)A_(12)+a_(13)A_(13) is equal to