Home
Class 14
MATHS
If 3x+2y=14 and xy=8, then (27x^3+8y^3) ...

If `3x+2y=14` and `xy=8`, then `(27x^3+8y^3)` is equal to:

A

816

B

728

C

832

D

1228

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( 27x^3 + 8y^3 \) given the equations \( 3x + 2y = 14 \) and \( xy = 8 \). ### Step 1: Use the identity for the sum of cubes We can use the identity for the sum of cubes: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] In our case, let \( a = 3x \) and \( b = 2y \). Then, \[ 27x^3 + 8y^3 = (3x)^3 + (2y)^3 = (3x + 2y)((3x)^2 - (3x)(2y) + (2y)^2) \] ### Step 2: Substitute the known values From the problem, we know: \[ 3x + 2y = 14 \] Now we need to calculate \( (3x)^2 - (3x)(2y) + (2y)^2 \). ### Step 3: Calculate each term 1. Calculate \( (3x)^2 \): \[ (3x)^2 = 9x^2 \] 2. Calculate \( (2y)^2 \): \[ (2y)^2 = 4y^2 \] 3. Calculate \( (3x)(2y) \): \[ (3x)(2y) = 6xy \] Since \( xy = 8 \), we have: \[ 6xy = 6 \times 8 = 48 \] ### Step 4: Combine the terms Now we can substitute back into our expression: \[ (3x)^2 - (3x)(2y) + (2y)^2 = 9x^2 - 48 + 4y^2 \] ### Step 5: Express \( 9x^2 + 4y^2 \) in terms of \( xy \) We know that: \[ (3x + 2y)^2 = (3x)^2 + 2(3x)(2y) + (2y)^2 \] Expanding this gives: \[ 14^2 = 9x^2 + 4y^2 + 12xy \] Calculating \( 14^2 \): \[ 196 = 9x^2 + 4y^2 + 12 \times 8 \] \[ 196 = 9x^2 + 4y^2 + 96 \] Thus, \[ 9x^2 + 4y^2 = 196 - 96 = 100 \] ### Step 6: Substitute back into the expression Now we substitute back: \[ (3x)^2 - (3x)(2y) + (2y)^2 = 100 - 48 = 52 \] ### Step 7: Calculate \( 27x^3 + 8y^3 \) Now we can find \( 27x^3 + 8y^3 \): \[ 27x^3 + 8y^3 = (3x + 2y)(9x^2 - 6xy + 4y^2) = 14 \times 52 \] Calculating this gives: \[ 27x^3 + 8y^3 = 728 \] ### Final Answer Thus, the value of \( 27x^3 + 8y^3 \) is \( \boxed{728} \).
Promotional Banner