Home
Class 14
MATHS
if x+1/x=P, then x^2+1/x^2=...

if `x+1/x=P, then x^2+1/x^2=`

A

`p^2`

B

`p^2+2`

C

`p^2-2`

D

`p^2-4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^2 + \frac{1}{x^2} \) given that \( x + \frac{1}{x} = P \). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ x + \frac{1}{x} = P \] 2. **Square both sides:** \[ \left( x + \frac{1}{x} \right)^2 = P^2 \] 3. **Use the identity for squaring a binomial:** The identity states that: \[ (a + b)^2 = a^2 + b^2 + 2ab \] Here, let \( a = x \) and \( b = \frac{1}{x} \). Therefore: \[ \left( x + \frac{1}{x} \right)^2 = x^2 + \frac{1}{x^2} + 2 \cdot x \cdot \frac{1}{x} \] 4. **Simplify the expression:** Since \( x \cdot \frac{1}{x} = 1 \): \[ x^2 + \frac{1}{x^2} + 2 = P^2 \] 5. **Rearrange to find \( x^2 + \frac{1}{x^2} \):** \[ x^2 + \frac{1}{x^2} = P^2 - 2 \] ### Final Answer: \[ x^2 + \frac{1}{x^2} = P^2 - 2 \]
Promotional Banner