Home
Class 14
MATHS
Solve: 2/10+2/1000-2/100+2/10000=...

Solve: `2/10+2/1000-2/100+2/10000=`

A

0.1088

B

0.1288

C

1.0822

D

0.1822

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{2}{10} + \frac{2}{1000} - \frac{2}{100} + \frac{2}{10000} \), we will follow these steps: ### Step 1: Identify the Denominators The denominators in the expression are 10, 1000, 100, and 10000. ### Step 2: Find the Least Common Multiple (LCM) The LCM of the denominators (10, 100, 1000, and 10000) is 10000. This will be our common denominator. ### Step 3: Convert Each Fraction to Have the Common Denominator We will convert each fraction to have the denominator of 10000: 1. \( \frac{2}{10} = \frac{2 \times 1000}{10 \times 1000} = \frac{2000}{10000} \) 2. \( \frac{2}{1000} = \frac{2 \times 10}{1000 \times 10} = \frac{20}{10000} \) 3. \( \frac{2}{100} = \frac{2 \times 100}{100 \times 100} = \frac{200}{10000} \) 4. \( \frac{2}{10000} = \frac{2}{10000} \) ### Step 4: Rewrite the Expression Now we can rewrite the expression with the common denominator: \[ \frac{2000}{10000} + \frac{20}{10000} - \frac{200}{10000} + \frac{2}{10000} \] ### Step 5: Combine the Numerators Now, we can combine the numerators: \[ \frac{2000 + 20 - 200 + 2}{10000} = \frac{1822}{10000} \] ### Step 6: Convert to Decimal To convert \( \frac{1822}{10000} \) to decimal, we can simply divide: \[ \frac{1822}{10000} = 0.1822 \] ### Final Answer Thus, the solution to the expression \( \frac{2}{10} + \frac{2}{1000} - \frac{2}{100} + \frac{2}{10000} \) is: \[ \boxed{0.1822} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

2/10+3/100+4/1000=

12+2/10+4/1000=

34+2/10+4/1000=

10^(-2)=1/100

Solve : x/2+x/4+x/5+10000=x

Solve : (2x+1)/(3x-2)=9/(10)

10% of 1000% of 100=?

Find the value of : 10,000-:1,000+100-:10=?