Home
Class 14
MATHS
Amulya does a piece of work in 2 days an...

Amulya does a piece of work in 2 days and Bindu does it in 6 days. In how many days will the two do it together?

A

`2//3` days

B

`3//2` days

C

`5//3` days

D

3 days

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of how many days Amulya and Bindu will take to complete the work together, we can follow these steps: ### Step 1: Determine the work done by each person in one day. - Amulya completes the work in 2 days, so in one day, she completes \( \frac{1}{2} \) of the work. - Bindu completes the work in 6 days, so in one day, she completes \( \frac{1}{6} \) of the work. ### Step 2: Calculate the combined work done by both in one day. - To find the total work done by both Amulya and Bindu together in one day, we add their individual contributions: \[ \text{Work done together in one day} = \frac{1}{2} + \frac{1}{6} \] ### Step 3: Find a common denominator and add the fractions. - The least common multiple of 2 and 6 is 6. We convert \( \frac{1}{2} \) to have a denominator of 6: \[ \frac{1}{2} = \frac{3}{6} \] - Now we can add the fractions: \[ \frac{3}{6} + \frac{1}{6} = \frac{4}{6} = \frac{2}{3} \] ### Step 4: Determine how many days they will take to complete the work together. - If together they complete \( \frac{2}{3} \) of the work in one day, then to complete the entire work (1 whole), we can set up the equation: \[ \text{Days} = \frac{1 \text{ work}}{\frac{2}{3} \text{ work/day}} = \frac{1 \times 3}{2} = \frac{3}{2} \text{ days} \] ### Conclusion: - Therefore, Amulya and Bindu together will complete the work in \( \frac{3}{2} \) days, which is equivalent to 1.5 days.
Promotional Banner