Home
Class 14
MATHS
The value of x which satisfy the equatio...

The value of x which satisfy the equation `5^(1+x)+5^(1-x) = 26`

A

-1,1

B

0,1

C

1,2

D

-1,0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 5^{1+x} + 5^{1-x} = 26 \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ 5^{1+x} + 5^{1-x} = 26 \] We can express \( 5^{1+x} \) and \( 5^{1-x} \) as: \[ 5^{1+x} = 5 \cdot 5^x \quad \text{and} \quad 5^{1-x} = 5 \cdot 5^{-x} \] Thus, we can rewrite the equation as: \[ 5 \cdot 5^x + 5 \cdot 5^{-x} = 26 \] ### Step 2: Factor out the common term Now, we can factor out the common term \( 5 \): \[ 5(5^x + 5^{-x}) = 26 \] Dividing both sides by 5 gives: \[ 5^x + 5^{-x} = \frac{26}{5} \] ### Step 3: Substitute for simplification Let \( y = 5^x \). Then \( 5^{-x} = \frac{1}{y} \). Substituting these into the equation gives: \[ y + \frac{1}{y} = \frac{26}{5} \] ### Step 4: Multiply through by \( y \) To eliminate the fraction, multiply through by \( y \): \[ y^2 + 1 = \frac{26}{5}y \] Rearranging gives: \[ y^2 - \frac{26}{5}y + 1 = 0 \] ### Step 5: Solve the quadratic equation Now we can use the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a = 1, b = -\frac{26}{5}, c = 1 \): \[ b^2 - 4ac = \left(-\frac{26}{5}\right)^2 - 4 \cdot 1 \cdot 1 = \frac{676}{25} - 4 = \frac{676}{25} - \frac{100}{25} = \frac{576}{25} \] Thus, \[ y = \frac{\frac{26}{5} \pm \sqrt{\frac{576}{25}}}{2} \] Calculating the square root: \[ \sqrt{\frac{576}{25}} = \frac{24}{5} \] So we have: \[ y = \frac{\frac{26}{5} \pm \frac{24}{5}}{2} \] This gives us two potential solutions: \[ y = \frac{50/5}{2} = 5 \quad \text{and} \quad y = \frac{2/5}{2} = \frac{1}{5} \] ### Step 6: Back substitute for \( x \) Recall that \( y = 5^x \): 1. For \( y = 5 \): \[ 5^x = 5 \implies x = 1 \] 2. For \( y = \frac{1}{5} \): \[ 5^x = \frac{1}{5} \implies x = -1 \] ### Conclusion The values of \( x \) that satisfy the equation are: \[ x = 1 \quad \text{and} \quad x = -1 \]
Promotional Banner