Home
Class 14
MATHS
If H.C.F. (56, 72)=56x+72y, then x and y...

If H.C.F. (56, 72)=`56x+72y`, then `x` and `y` are equal to:

A

`x = 4, y=3`

B

`x = -4, y=3`

C

`x = 4, y=-3`

D

`x = -4, y=-3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( x \) and \( y \) such that the equation \( H.C.F.(56, 72) = 56x + 72y \) holds true. ### Step-by-Step Solution: 1. **Find the H.C.F. of 56 and 72**: - First, we will find the prime factorization of both numbers. - For 56: \[ 56 = 2^3 \times 7 \] - For 72: \[ 72 = 2^3 \times 3^2 \] - The common prime factors are \( 2^3 \). Therefore, the H.C.F. is: \[ H.C.F.(56, 72) = 2^3 = 8 \] 2. **Set up the equation**: - We have established that: \[ 56x + 72y = 8 \] 3. **Substituting the options**: - We will substitute the values of \( x \) and \( y \) from the given options to find which one satisfies the equation. **Option 1**: \( x = 4, y = 3 \) \[ 56(4) + 72(3) = 224 + 216 = 440 \quad \text{(not equal to 8)} \] **Option 2**: \( x = -4, y = 3 \) \[ 56(-4) + 72(3) = -224 + 216 = -8 \quad \text{(not equal to 8)} \] **Option 3**: \( x = 4, y = -3 \) \[ 56(4) + 72(-3) = 224 - 216 = 8 \quad \text{(equal to 8)} \] **Option 4**: \( x = -4, y = -3 \) \[ 56(-4) + 72(-3) = -224 - 216 = -440 \quad \text{(not equal to 8)} \] 4. **Conclusion**: - The only option that satisfies the equation \( 56x + 72y = 8 \) is: \[ x = 4, y = -3 \] ### Final Answer: \[ x = 4, \quad y = -3 \]
Promotional Banner