Home
Class 14
MATHS
If alpha, beta, gamma are the zeros of t...

If `alpha, beta, gamma` are the zeros of the cubic polynomial `ax^3+bx^2+cx+d`, then `alphabeta+betagamma+gammaalpha` is equal to:

A

`-b/a`

B

`b/a`

C

`c/a`

D

`d/a`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \alpha\beta + \beta\gamma + \gamma\alpha \) for the cubic polynomial \( ax^3 + bx^2 + cx + d \) where \( \alpha, \beta, \gamma \) are the zeros, we can use Vieta's formulas. ### Step-by-Step Solution: 1. **Identify the coefficients of the polynomial**: The given cubic polynomial is \( ax^3 + bx^2 + cx + d \). Here, the coefficients are: - \( A = a \) (coefficient of \( x^3 \)) - \( B = b \) (coefficient of \( x^2 \)) - \( C = c \) (coefficient of \( x \)) - \( D = d \) (constant term) 2. **Use Vieta's formulas**: According to Vieta's formulas for a cubic polynomial, the relationships between the roots (zeros) and the coefficients are: - \( \alpha + \beta + \gamma = -\frac{B}{A} \) - \( \alpha\beta + \beta\gamma + \gamma\alpha = \frac{C}{A} \) - \( \alpha\beta\gamma = -\frac{D}{A} \) 3. **Find \( \alpha\beta + \beta\gamma + \gamma\alpha \)**: From Vieta's formulas, we directly have: \[ \alpha\beta + \beta\gamma + \gamma\alpha = \frac{C}{A} \] 4. **Conclusion**: Therefore, the value of \( \alpha\beta + \beta\gamma + \gamma\alpha \) is equal to \( \frac{c}{a} \). ### Final Answer: \[ \alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are the zeros of the polynomial x^(3)-6x^(2) -x+ 30 then (alpha beta+beta gamma + gamma alpha) = ?

If alpha, beta, gamma are the zeros of the polynomial 2x^(3)+ x^(2) - 13 x+ 6 then alpha beta gamma = ?

If alpha, beta , gamma are the zeros of the polynomial x^(3)-6x^(2)-x+30 then the value of (alpha beta+beta gamma+gamma alpha) is

If alpha,betaandgamma are the zeros of the polynomial f(x)=ax^(3)+bx^(2)+cx+d , then alpha^(2)+beta^(2)+gamma^(2) is equal to

If alpha,beta,gamma are the zeroes of the polynomial x^(3)+px^(2)+qx+r , then find (1)/(alphabeta)+(1)/(betagamma)+(1)/(gammaalpha)

If alpha,beta,gamma are the zeros of the polynomial f(x)=x^(3)-px^(2)+qx-r, then (1)/(alpha beta)+(1)/(beta gamma)+(1)/(gamma alpha)=

If alpha,beta,gamma are the zeroes of the polynomial f(x)=x^(3)-5x^(2)-2x+24 such that alphabeta=12 , then

If alpha, beta are the zeros of the polynomial f(x) = ax^2 + bx + C , then find 1/alpha^(2) +1/beta^(2) .

If alpha, beta, gamma be the zeros of the polynomial p(x) such that (alpha+beta+gamma) = 3, (alpha beta+beta gamma+gamma alpha) =- 10 and alpha beta gamma =- 24 then p(x) = ?

If alpha,beta,gamma are the zeros of the polynomial f(x)=ax^(3)+bx^(2)+cx+d, then (1)/(alpha)+(1)/(beta)+(1)/(gamma)=( a) (b)/(d)(b)(c)/(d)(c)(c)/(d)(d)(c)/(a)