Home
Class 14
MATHS
If (sqrt11-sqrt7)/(sqrt11+sqrt7)=a-bsqrt...

If `(sqrt11-sqrt7)/(sqrt11+sqrt7)=a-bsqrt77,` then (a+b) is equal to:

A

5

B

7

C

11

D

18

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((\sqrt{11} - \sqrt{7}) / (\sqrt{11} + \sqrt{7}) = a - b\sqrt{77}\), we will follow these steps: ### Step 1: Rationalize the denominator To rationalize the denominator, we multiply the numerator and denominator by the conjugate of the denominator, which is \((\sqrt{11} - \sqrt{7})\). \[ \frac{\sqrt{11} - \sqrt{7}}{\sqrt{11} + \sqrt{7}} \cdot \frac{\sqrt{11} - \sqrt{7}}{\sqrt{11} - \sqrt{7}} = \frac{(\sqrt{11} - \sqrt{7})^2}{(\sqrt{11})^2 - (\sqrt{7})^2} \] ### Step 2: Simplify the denominator Calculating the denominator: \[ (\sqrt{11})^2 - (\sqrt{7})^2 = 11 - 7 = 4 \] ### Step 3: Expand the numerator Now, we expand the numerator: \[ (\sqrt{11} - \sqrt{7})^2 = 11 - 2\sqrt{11}\sqrt{7} + 7 = 18 - 2\sqrt{77} \] ### Step 4: Combine the results Now we can substitute back into our equation: \[ \frac{18 - 2\sqrt{77}}{4} = \frac{18}{4} - \frac{2\sqrt{77}}{4} = \frac{9}{2} - \frac{1}{2}\sqrt{77} \] ### Step 5: Identify \(a\) and \(b\) From the equation \(\frac{9}{2} - \frac{1}{2}\sqrt{77} = a - b\sqrt{77}\), we can identify: \[ a = \frac{9}{2}, \quad b = \frac{1}{2} \] ### Step 6: Calculate \(a + b\) Now, we calculate \(a + b\): \[ a + b = \frac{9}{2} + \frac{1}{2} = \frac{10}{2} = 5 \] Thus, the value of \(a + b\) is: \[ \boxed{5} \]
Promotional Banner