Home
Class 14
MATHS
root(3)(x)/2.56=100/x, then 'x' is equal...

`root(3)(x)/2.56=100/x`, then 'x' is equal to:

A

4

B

16

C

64

D

256

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \frac{\sqrt[3]{x}}{2.56} = \frac{100}{x} \), we will follow these steps: ### Step 1: Cross-multiply the equation We start with the equation: \[ \frac{\sqrt[3]{x}}{2.56} = \frac{100}{x} \] Cross-multiplying gives us: \[ \sqrt[3]{x} \cdot x = 100 \cdot 2.56 \] This simplifies to: \[ x^{1 + \frac{1}{3}} = 256 \] ### Step 2: Simplify the exponent The exponent \( 1 + \frac{1}{3} \) can be expressed as: \[ x^{\frac{3}{3} + \frac{1}{3}} = x^{\frac{4}{3}} \] Thus, we rewrite the equation as: \[ x^{\frac{4}{3}} = 256 \] ### Step 3: Solve for \( x \) To isolate \( x \), we raise both sides to the power of \( \frac{3}{4} \): \[ x = 256^{\frac{3}{4}} \] ### Step 4: Calculate \( 256^{\frac{3}{4}} \) First, we find \( 256^{\frac{1}{4}} \): \[ 256 = 4^4 \quad \text{(since } 4^4 = 256\text{)} \] Thus, \[ 256^{\frac{1}{4}} = 4 \] Now we raise this to the power of 3: \[ x = 4^3 = 64 \] ### Final Answer The value of \( x \) is: \[ \boxed{64} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If l=int(dx)/(root(3)((x+1)^(2)(x-1)^(4)))=kroot(3)((1+x)/(1-x))+c , then k is equal to

If root(3)(32) = 2^x , then x is equal to

Let x=root(3)(2+sqrt5)+root(3)(2-sqrt5), then x^3+3x is equal to (i)1 (ii)2 (iii)3 (iv)4

If 2^(x)=root(3)(32), then x is equal to a.5b.3c.(3)/(5) d.(5)/(3)

int(x+root(3)(x^(2))+root(6)(x))dx is equal to

If f(x)=27x^(3)+(1)/(x^(3)) and alpha,beta are the roots of the equation 3x+(1)/(x)=2, then -f(alpha) is equal to

If 99xx21-root(3)(x)=1968 then x equals

If ""^(n)C_(x) = 56 and ""^(n)P_(x) = 336 , then n is equal to