Home
Class 14
MATHS
What is the value of a(a+b^2+c)+b^2(a^...

What is the value of
`a(a+b^2+c)+b^2(a^2+b^2+c^2)-c(a+b^2)`, when a = 1, b = -3 and c = -2?

A

138

B

154

C

162

D

176

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \( a(a+b^2+c) + b^2(a^2+b^2+c^2) - c(a+b^2) \) when \( a = 1 \), \( b = -3 \), and \( c = -2 \), we will substitute the values of \( a \), \( b \), and \( c \) step by step. ### Step 1: Substitute the values into the expression We start with the expression: \[ a(a+b^2+c) + b^2(a^2+b^2+c^2) - c(a+b^2) \] Substituting \( a = 1 \), \( b = -3 \), and \( c = -2 \): \[ 1(1 + (-3)^2 + (-2)) + (-3)^2(1^2 + (-3)^2 + (-2)^2) - (-2)(1 + (-3)^2) \] ### Step 2: Calculate \( b^2 \) and \( c^2 \) Calculate \( b^2 \) and \( c^2 \): \[ b^2 = (-3)^2 = 9 \] \[ c^2 = (-2)^2 = 4 \] ### Step 3: Substitute \( b^2 \) and \( c^2 \) into the expression Now substitute \( b^2 \) and \( c^2 \) back into the expression: \[ 1(1 + 9 - 2) + 9(1 + 9 + 4) - (-2)(1 + 9) \] ### Step 4: Simplify the first term Calculate the first term: \[ 1(1 + 9 - 2) = 1(8) = 8 \] ### Step 5: Simplify the second term Calculate the second term: \[ 9(1 + 9 + 4) = 9(14) = 126 \] ### Step 6: Simplify the third term Calculate the third term: \[ -(-2)(1 + 9) = 2(10) = 20 \] ### Step 7: Combine all the terms Now combine all the terms: \[ 8 + 126 + 20 = 154 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{154} \]
Promotional Banner