Home
Class 14
MATHS
The expression (x-y) (x^2+xy+y^2)+(x+y...

The expression
`(x-y) (x^2+xy+y^2)+(x+y)(x^2-xy+y^2)-(x+y)(x^2-y^2)` is equal to

A

`x^3-y^3+xy(x+y)`

B

`y^3-x^3+xy(y+x)`

C

`x^3+y^3+xy(y-x)`

D

`x^3+y^3+xy(x-y)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((x-y)(x^2+xy+y^2)+(x+y)(x^2-xy+y^2)-(x+y)(x^2-y^2)\), we will follow these steps: ### Step 1: Expand Each Term We will expand each of the three terms in the expression. 1. **Expand** \((x-y)(x^2+xy+y^2)\): \[ = x(x^2 + xy + y^2) - y(x^2 + xy + y^2) = x^3 + x^2y + xy^2 - (yx^2 + y^2x + y^3) = x^3 + x^2y + xy^2 - yx^2 - y^2x - y^3 = x^3 - y^3 \] 2. **Expand** \((x+y)(x^2-xy+y^2)\): \[ = x(x^2 - xy + y^2) + y(x^2 - xy + y^2) = x^3 - x^2y + xy^2 + yx^2 - y^2x + y^3 = x^3 + y^3 \] 3. **Expand** \(-(x+y)(x^2-y^2)\): \[ = -(x+y)(x-y)(x+y) = -(x^3 - y^3) \] ### Step 2: Combine the Expanded Terms Now we will combine all the expanded terms: \[ (x^3 - y^3) + (x^3 + y^3) - (x^3 - y^3) \] ### Step 3: Simplify the Expression Now we will simplify the combined expression: \[ = x^3 - y^3 + x^3 + y^3 - x^3 + y^3 \] \[ = x^3 + y^3 - y^3 \] \[ = x^3 \] ### Final Result Thus, the expression simplifies to: \[ \boxed{x^3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The product of the rational expressions (x^2 - y^2)/(x^2 + 2xy + y^2) and (xy + y^2)/(x^2 - xy) is:

What is ((x^(2)+y^(2))(x-y)-(x-y)^(3))/(x^(2)y-xy^(2)) equal to ?

x-x^(2)y+xy^(2)-y

(x)/(x-y)-(y)/(x+y)-(2xy)/(x^(2)-y^(2))

sin(xy) + (x)/(y) = x^(2) - y

On simplification, (x^3-y^3)/(x[(x+y)^2-3xy]) div (y[(x-y)^2+3xy])/(x^3+y^3)xx ((x+y)^2-(x-y)^2)/(x^2-y^2) is equal to : सरलीकरण के बाद, (x^3-y^3)/(x[(x+y)^2-3xy]) div (y[(x-y)^2+3xy])/(x^3+y^3)xx ((x+y)^2-(x-y)^2)/(x^2-y^2) किसके बराबर होगा?