Home
Class 14
MATHS
The value of 6 2/3div 2 1/2xx3 3/4-5 1...

The value of
`6 2/3div 2 1/2xx3 3/4-5 1/2xx 4 1/4+1 2/3(7/8+3/4xx2/3)` is:

A

`-11 1/12`

B

`11 1/12`

C

`6 1/2`

D

`-6 1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 6 \frac{2}{3} \div 2 \frac{1}{2} \times 3 \frac{3}{4} - 5 \frac{1}{2} \times 4 \frac{1}{4} + 1 \frac{2}{3} \left( \frac{7}{8} + 3 \frac{4}{3} \times \frac{2}{3} \right) \), we will follow these steps: ### Step 1: Convert Mixed Numbers to Improper Fractions Convert all mixed numbers to improper fractions. - \( 6 \frac{2}{3} = \frac{20}{3} \) - \( 2 \frac{1}{2} = \frac{5}{2} \) - \( 3 \frac{3}{4} = \frac{15}{4} \) - \( 5 \frac{1}{2} = \frac{11}{2} \) - \( 4 \frac{1}{4} = \frac{17}{4} \) - \( 1 \frac{2}{3} = \frac{5}{3} \) Now, rewrite the expression: \[ \frac{20}{3} \div \frac{5}{2} \times \frac{15}{4} - \frac{11}{2} \times \frac{17}{4} + \frac{5}{3} \left( \frac{7}{8} + 3 \frac{4}{3} \times \frac{2}{3} \right) \] ### Step 2: Perform Division Calculate \( \frac{20}{3} \div \frac{5}{2} \): \[ \frac{20}{3} \times \frac{2}{5} = \frac{20 \times 2}{3 \times 5} = \frac{40}{15} = \frac{8}{3} \] ### Step 3: Multiply Now multiply \( \frac{8}{3} \) by \( \frac{15}{4} \): \[ \frac{8}{3} \times \frac{15}{4} = \frac{8 \times 15}{3 \times 4} = \frac{120}{12} = 10 \] ### Step 4: Calculate the Second Term Now calculate \( \frac{11}{2} \times \frac{17}{4} \): \[ \frac{11 \times 17}{2 \times 4} = \frac{187}{8} \] ### Step 5: Calculate the Third Term Now calculate \( \frac{5}{3} \left( \frac{7}{8} + 3 \frac{4}{3} \times \frac{2}{3} \right) \): First, calculate \( 3 \frac{4}{3} \): \[ 3 \frac{4}{3} = \frac{13}{3} \] Now multiply: \[ \frac{13}{3} \times \frac{2}{3} = \frac{26}{9} \] Now add \( \frac{7}{8} + \frac{26}{9} \): To add these fractions, find a common denominator (72): \[ \frac{7}{8} = \frac{63}{72}, \quad \frac{26}{9} = \frac{208}{72} \] So, \[ \frac{63}{72} + \frac{208}{72} = \frac{271}{72} \] Now multiply by \( \frac{5}{3} \): \[ \frac{5}{3} \times \frac{271}{72} = \frac{1355}{216} \] ### Step 6: Combine All Parts Now combine all parts: \[ 10 - \frac{187}{8} + \frac{1355}{216} \] Convert 10 to a fraction with a common denominator of 216: \[ 10 = \frac{2160}{216} \] Convert \( \frac{187}{8} \) to a fraction with a denominator of 216: \[ \frac{187}{8} = \frac{187 \times 27}{216} = \frac{5049}{216} \] Now combine: \[ \frac{2160}{216} - \frac{5049}{216} + \frac{1355}{216} = \frac{2160 - 5049 + 1355}{216} = \frac{-1534}{216} \] ### Step 7: Simplify Now simplify \( \frac{-1534}{216} \): Divide both by 2: \[ \frac{-767}{108} \] ### Final Answer The final value is: \[ -\frac{767}{108} \]
Promotional Banner