Home
Class 14
MATHS
If x=2^3xx3^2xx5^3xx7^3 y=2^2xx3^3xx5^...

If `x=2^3xx3^2xx5^3xx7^3`
`y=2^2xx3^3xx5^4xx7^3, and`
`z=2^4xx3^4xx5^2xx7^5`
then H.C.F. of `x,y and z` is:

A

`(15)^3xx7^4`

B

`(30)^3xx7^3`

C

`30xx7^5`

D

`(30)^2xx7^3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the H.C.F. (Highest Common Factor) of the numbers \( x \), \( y \), and \( z \), we will follow these steps: ### Step 1: Write down the prime factorization of each number. - \( x = 2^3 \times 3^2 \times 5^3 \times 7^3 \) - \( y = 2^2 \times 3^3 \times 5^4 \times 7^3 \) - \( z = 2^4 \times 3^4 \times 5^2 \times 7^5 \) ### Step 2: Identify the minimum power of each prime factor. To find the H.C.F., we take the minimum power of each prime factor from the factorizations of \( x \), \( y \), and \( z \): - For \( 2 \): The powers are \( 3, 2, 4 \). The minimum is \( 2 \). - For \( 3 \): The powers are \( 2, 3, 4 \). The minimum is \( 2 \). - For \( 5 \): The powers are \( 3, 4, 2 \). The minimum is \( 2 \). - For \( 7 \): The powers are \( 3, 3, 5 \). The minimum is \( 3 \). ### Step 3: Write down the H.C.F. using the minimum powers. Now we can write the H.C.F. using the minimum powers we found: \[ \text{H.C.F.} = 2^2 \times 3^2 \times 5^2 \times 7^3 \] ### Step 4: Calculate the numerical value of the H.C.F. Now we will calculate the numerical value of the H.C.F.: - Calculate \( 2^2 = 4 \) - Calculate \( 3^2 = 9 \) - Calculate \( 5^2 = 25 \) - Calculate \( 7^3 = 343 \) Now multiply these values together: \[ \text{H.C.F.} = 4 \times 9 \times 25 \times 343 \] ### Step 5: Perform the multiplication step by step. 1. First, calculate \( 4 \times 9 = 36 \). 2. Next, calculate \( 36 \times 25 = 900 \). 3. Finally, calculate \( 900 \times 343 \). To simplify \( 900 \times 343 \): - \( 900 = 9 \times 100 = 9 \times 10^2 \) - \( 343 = 7^3 \) So, \( 900 \times 343 = 900 \times 343 = 308700 \). Thus, the H.C.F. of \( x \), \( y \), and \( z \) is: \[ \text{H.C.F.} = 900 \times 343 = 308700 \] ### Final Answer: The H.C.F. of \( x \), \( y \), and \( z \) is \( 308700 \). ---
Promotional Banner