Home
Class 14
MATHS
If (5/7)^4xx(5/7)^(-3)=(5/7)^(5x-2), the...

If `(5/7)^4xx(5/7)^(-3)=(5/7)^(5x-2)`, then `x` is:

A

`1/5`

B

`2/5`

C

`3/5`

D

`4/5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((\frac{5}{7})^4 \cdot (\frac{5}{7})^{-3} = (\frac{5}{7})^{5x - 2}\), we can follow these steps: ### Step 1: Combine the left-hand side using the properties of exponents Using the property of exponents that states \(a^m \cdot a^n = a^{m+n}\), we can combine the left-hand side: \[ (\frac{5}{7})^4 \cdot (\frac{5}{7})^{-3} = (\frac{5}{7})^{4 + (-3)} = (\frac{5}{7})^{4 - 3} = (\frac{5}{7})^1 \] ### Step 2: Set the exponents equal to each other Now we have: \[ (\frac{5}{7})^1 = (\frac{5}{7})^{5x - 2} \] Since the bases are the same, we can set the exponents equal to each other: \[ 1 = 5x - 2 \] ### Step 3: Solve for \(x\) Now, we can solve for \(x\): 1. Add 2 to both sides: \[ 1 + 2 = 5x \] \[ 3 = 5x \] 2. Divide both sides by 5: \[ x = \frac{3}{5} \] Thus, the value of \(x\) is \(\frac{3}{5}\). ### Final Answer: \[ x = \frac{3}{5} \] ---
Promotional Banner