Home
Class 14
MATHS
The value of sqrt(91+(sqrt(70+sqrt121)) ...

The value of `sqrt(91+(sqrt(70+sqrt121))` is

A

9

B

10

C

11

D

12

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{91 + \sqrt{70 + \sqrt{121}}} \), we will follow these steps: ### Step 1: Simplify \( \sqrt{121} \) First, we need to calculate \( \sqrt{121} \): \[ \sqrt{121} = 11 \] ### Step 2: Substitute \( \sqrt{121} \) into the expression Now, substitute \( 11 \) back into the expression: \[ \sqrt{91 + \sqrt{70 + 11}} \] ### Step 3: Simplify \( 70 + 11 \) Next, we simplify \( 70 + 11 \): \[ 70 + 11 = 81 \] ### Step 4: Substitute \( 81 \) into the expression Now, substitute \( 81 \) back into the expression: \[ \sqrt{91 + \sqrt{81}} \] ### Step 5: Simplify \( \sqrt{81} \) Now, calculate \( \sqrt{81} \): \[ \sqrt{81} = 9 \] ### Step 6: Substitute \( 9 \) into the expression Now, substitute \( 9 \) back into the expression: \[ \sqrt{91 + 9} \] ### Step 7: Simplify \( 91 + 9 \) Now, simplify \( 91 + 9 \): \[ 91 + 9 = 100 \] ### Step 8: Calculate \( \sqrt{100} \) Finally, calculate \( \sqrt{100} \): \[ \sqrt{100} = 10 \] ### Final Answer Thus, the value of \( \sqrt{91 + \sqrt{70 + \sqrt{121}}} \) is \( 10 \). ---
Promotional Banner