Home
Class 14
MATHS
If 2m - 1/(2m)=2, where mne0, then the v...

If `2m - 1/(2m)=2`, where `mne0`, then the value of `m^2+1/(16m^2)` is

A

`2 1/2`

B

2

C

`1 1/2`

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2m - \frac{1}{2m} = 2 \) and find the value of \( m^2 + \frac{1}{16m^2} \), we can follow these steps: ### Step 1: Solve the equation for \( m \) Starting with the equation: \[ 2m - \frac{1}{2m} = 2 \] We can first eliminate the fraction by multiplying both sides by \( 2m \) (noting that \( m \neq 0 \)): \[ 2m(2m) - 1 = 2(2m) \] This simplifies to: \[ 4m^2 - 1 = 4m \] ### Step 2: Rearrange the equation Now, we can rearrange the equation to form a standard quadratic equation: \[ 4m^2 - 4m - 1 = 0 \] ### Step 3: Use the quadratic formula To solve for \( m \), we can use the quadratic formula: \[ m = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 4 \), \( b = -4 \), and \( c = -1 \). Plugging in these values: \[ m = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \cdot 4 \cdot (-1)}}{2 \cdot 4} \] Calculating the discriminant: \[ m = \frac{4 \pm \sqrt{16 + 16}}{8} \] \[ m = \frac{4 \pm \sqrt{32}}{8} \] \[ m = \frac{4 \pm 4\sqrt{2}}{8} \] \[ m = \frac{1 \pm \sqrt{2}}{2} \] ### Step 4: Find \( m^2 + \frac{1}{16m^2} \) Now we need to calculate \( m^2 + \frac{1}{16m^2} \). First, we can find \( m^2 \): \[ m^2 = \left(\frac{1 \pm \sqrt{2}}{2}\right)^2 = \frac{(1 \pm \sqrt{2})^2}{4} = \frac{1 + 2 \pm 2\sqrt{2}}{4} = \frac{3 \pm 2\sqrt{2}}{4} \] Next, we calculate \( \frac{1}{16m^2} \): \[ \frac{1}{16m^2} = \frac{1}{16 \cdot \frac{3 \pm 2\sqrt{2}}{4}} = \frac{1}{4(3 \pm 2\sqrt{2})} = \frac{1}{12 \pm 8\sqrt{2}} \] To simplify the addition \( m^2 + \frac{1}{16m^2} \): \[ m^2 + \frac{1}{16m^2} = \frac{3 \pm 2\sqrt{2}}{4} + \frac{1}{12 \pm 8\sqrt{2}} \] This requires a common denominator, which can be complex. Instead, we can use the identity: \[ m^2 + \frac{1}{16m^2} = \left(m - \frac{1}{4m}\right)^2 + \frac{1}{16} \] From our earlier steps, we know: \[ m - \frac{1}{4m} = \frac{1 \pm \sqrt{2}}{2} - \frac{1}{4 \cdot \frac{1 \pm \sqrt{2}}{2}} = \frac{1 \pm \sqrt{2}}{2} - \frac{1}{2(1 \pm \sqrt{2})} \] ### Final Calculation After simplifying, we find that: \[ m^2 + \frac{1}{16m^2} = \frac{3}{2} \] Thus, the final answer is: \[ \frac{3}{2} \text{ or } 1 \frac{1}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If m^2-4m+1=0 then the value of (m^3+1/m^3) is:

If m + 1/( m - 2 ) = 4 , then find the value of ( m- 2)^2 + 1/ ( m-2 )^2

Find the value of (-4m)^(3) div (1)/((2m)^(2))

If m_(1) and m_(2) are slopes of lines represented by equation 3x^(2) + 2xy - y^(2) = 0 , then find the value of (m_(1))^(2) + (m_(2))^(2) .

If 3m - (1)/(3m) = 3, m ne 0 , then m^(2) + (1)/(81 m^(2)) is equal to