Home
Class 14
MATHS
If a=sqrt((2013)^2+2013+2014), then the ...

If `a=sqrt((2013)^2+2013+2014)`, then the value of a is

A

1007

B

2013

C

2014

D

1002

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( a = \sqrt{(2013)^2 + 2013 + 2014} \), we will follow these steps: ### Step 1: Write down the expression We start with the expression for \( a \): \[ a = \sqrt{(2013)^2 + 2013 + 2014} \] ### Step 2: Simplify the expression inside the square root We can combine the constants \( 2013 \) and \( 2014 \): \[ 2013 + 2014 = 4027 \] Thus, we can rewrite the expression as: \[ a = \sqrt{(2013)^2 + 4027} \] ### Step 3: Calculate \( (2013)^2 \) Now, we calculate \( (2013)^2 \): \[ (2013)^2 = 4052169 \] So, we substitute this value back into the expression: \[ a = \sqrt{4052169 + 4027} \] ### Step 4: Add the values inside the square root Next, we add \( 4052169 \) and \( 4027 \): \[ 4052169 + 4027 = 4056196 \] Now, we have: \[ a = \sqrt{4056196} \] ### Step 5: Calculate the square root Finally, we need to calculate the square root of \( 4056196 \): \[ a = 2014 \] ### Conclusion Thus, the value of \( a \) is: \[ \boxed{2014} \]
Promotional Banner