Home
Class 14
MATHS
If y=(x-2)/(x+1),yne1, then x equals...

If `y=(x-2)/(x+1),yne1, then `x` equals

A

`(2-y)/(1-y)`

B

`(y+2)/(1-y)`

C

`(y+2)/(y+1)`

D

`(y-2)/(y+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( y = \frac{x - 2}{x + 1} \) under the condition that \( y \neq 1 \), we will follow these steps: ### Step 1: Cross Multiply Start with the equation: \[ y = \frac{x - 2}{x + 1} \] Cross-multiply to eliminate the fraction: \[ y(x + 1) = x - 2 \] ### Step 2: Expand the Left Side Distribute \( y \) on the left side: \[ yx + y = x - 2 \] ### Step 3: Rearrange the Equation Rearrange the equation to isolate terms involving \( x \): \[ yx - x = -2 - y \] ### Step 4: Factor Out \( x \) Factor out \( x \) from the left side: \[ x(y - 1) = -2 - y \] ### Step 5: Solve for \( x \) Now, solve for \( x \): \[ x = \frac{-2 - y}{y - 1} \] ### Step 6: Simplify the Expression We can rewrite the expression: \[ x = \frac{-(y + 2)}{y - 1} \] ### Step 7: Consider the Condition \( y \neq 1 \) Since \( y \neq 1 \), we can use this expression for \( x \) without any issues. ### Final Expression Thus, the value of \( x \) in terms of \( y \) is: \[ x = \frac{-(y + 2)}{y - 1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If y = (x +2)/( x +1) , y ne 1, then x equals

If y=f(x)=(x+2)/(x-1),x,y!=1 then x is equal to

If f(x)=(x+2)/(x-1) then f(y) is equal to

If x = (1 + 2y)/(2 + y) and y = ( 1 + 2t)/( 2 + t), then x equals

If (dx)/(dy)=(1+x-y^(2))/(y),x(1)=1 ,then 5x(2) is equal to_____________.

If y=2|x-2|+3|x+1| then y_(min) is equal to

If (dy)/(dx)=(2^(x+y)-2^(x))/(2^(y)),y(0)=1 then y(1) is equal to

If x(dy)/(dx)=x^(2)+y-2, y(1)=1 , then y(2) equals ………………..

If y=(tan^(-1))(sqrt(1+x^(2))-1)/(x), then y'(1) is equal to