Home
Class 14
MATHS
The value of sqrt(2+sqrt3)+sqrt(2-sqrt(3...

The value of `sqrt(2+sqrt3)+sqrt(2-sqrt(3)` is

A

`2sqrt2`

B

`2sqrt3`

C

`sqrt6`

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sqrt{2 + \sqrt{3}} + \sqrt{2 - \sqrt{3}} \), we can simplify this expression step by step. ### Step 1: Simplify Each Square Root Let's denote: - \( a = \sqrt{2 + \sqrt{3}} \) - \( b = \sqrt{2 - \sqrt{3}} \) We want to find \( a + b \). ### Step 2: Calculate \( a^2 + b^2 \) First, we will calculate \( a^2 + b^2 \): \[ a^2 = 2 + \sqrt{3} \] \[ b^2 = 2 - \sqrt{3} \] Now, adding these two: \[ a^2 + b^2 = (2 + \sqrt{3}) + (2 - \sqrt{3}) = 4 \] ### Step 3: Calculate \( ab \) Next, we calculate \( ab \): \[ ab = \sqrt{(2 + \sqrt{3})(2 - \sqrt{3})} \] Using the difference of squares: \[ ab = \sqrt{2^2 - (\sqrt{3})^2} = \sqrt{4 - 3} = \sqrt{1} = 1 \] ### Step 4: Use the Identity for \( (a + b)^2 \) We can use the identity: \[ (a + b)^2 = a^2 + b^2 + 2ab \] Substituting the values we found: \[ (a + b)^2 = 4 + 2 \cdot 1 = 4 + 2 = 6 \] ### Step 5: Take the Square Root Now, we take the square root of both sides to find \( a + b \): \[ a + b = \sqrt{6} \] Thus, the value of \( \sqrt{2 + \sqrt{3}} + \sqrt{2 - \sqrt{3}} \) is \( \sqrt{6} \). ### Final Answer \[ \sqrt{2 + \sqrt{3}} + \sqrt{2 - \sqrt{3}} = \sqrt{6} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sqrt(2 + sqrt(3)) + sqrt(2 - sqrt(3)) is

Find the value of sqrt(3+sqrt(5))-sqrt(2+sqrt(3))

Find the value of sqrt(3+sqrt(5))-sqrt(2+sqrt(3))

The value of ((sqrt(sqrt(3)+1)+sqrt(sqrt(3)-1))^(2)(sqrt(3)-sqrt(2)))/((sqrt(sqrt(3)+1))^(2)-(sqrt(sqrt(3)-1))^(2)) is

The value of 2(sqrt(2)+sqrt(6))/(3sqrt(2+sqrt(3)))+sqrt(2+sqrt(3))+sqrt(2-sqrt(3))

The value of 5sqrt(3) + 7sqrt(2) - sqrt(6) - 23/(sqrt(2) + sqrt(3) + sqrt(6)) is:

The value of sqrt(3-2sqrt(2)) is sqrt(2)-1(b)sqrt(2)+1(c)sqrt(3)-sqrt(2)(d)sqrt(3)+sqrt(2)