Home
Class 14
MATHS
Olexle5 and 5leyle10, then maximum value...

`Olexle5 and 5leyle10`, then maximum value of `(x/y)` will be

A

1

B

`1/2`

C

2

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of \( \frac{x}{y} \) given the constraints \( 0 \leq x \leq 5 \) and \( 5 \leq y \leq 10 \), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the ranges for \( x \) and \( y \)**: - \( x \) can take values from 0 to 5 (inclusive). - \( y \) can take values from 5 to 10 (inclusive). 2. **Set up the expression to maximize**: - We need to maximize \( \frac{x}{y} \). 3. **Consider the maximum value of \( x \)**: - The maximum value of \( x \) is 5 (since \( x \) can be at most 5). 4. **Consider the minimum value of \( y \)**: - The minimum value of \( y \) is 5 (since \( y \) must be at least 5). 5. **Calculate the maximum value of \( \frac{x}{y} \)**: - Substitute the maximum \( x \) and minimum \( y \) into the expression: \[ \frac{x}{y} = \frac{5}{5} = 1 \] 6. **Conclusion**: - The maximum value of \( \frac{x}{y} \) is 1. ### Final Answer: The maximum value of \( \frac{x}{y} \) is \( 1 \).
Promotional Banner