Home
Class 12
MATHS
Show : [ [ cosalpha , -sinalpha ] , ...

Show :

`[ [ cosalpha , -sinalpha ] , [ sinalpha , cosalpha ] ]= [ [1 , 0 ] , [ 0 , 1 ]]`

Promotional Banner

Similar Questions

Explore conceptually related problems

A = [ [ cosalpha , sinalpha ], [ sinalpha , cosalpha ] ] ,then find | A |

If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] , then A^(10)=

A = [ [ 1 , 0 , 0 ] , [ 0 , cosalpha , sinalpha ] , [ 0 , sinalpha , - cosalpha ] ] , find |A|

If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] and A(adjA)=[[k, 0], [0, k]] , then k=

If A=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0, 1]] , then (adjA)^(-1)=

Evaluate the following: |[cosalpha, sinalpha],[sinalpha, cosalpha]|

If F(alpha)=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0, 1]] , where alphainR , then (F(alpha))^(-1)=

If A_(alpha)=[(cosalpha,-sinalpha),(sinalpha,cosalpha)] , then

costheta-sintheta=cosalpha-sinalpha

Statement 1: If f(alpha)=[[cosalpha,-sinalpha,0],[sinalpha,cosalpha,0],[ 0, 0, 1]],t h e n [F(alpha)]^(-1)=F(-alpha)dot Statement 2: For matrix G(beta)=[[cosbeta,0,sinbeta],[0, 1, 0],[-sinbeta,0,cosbeta]]dot we have [G(beta)]^(-1)=G(-beta)dot