Home
Class 12
MATHS
If G(x ) = - sqrt( 25-x^2) lim( x - > ...

If `G(x ) = - sqrt( 25-x^2)`

`lim_( x - > 1 ) (G(x) - G(1 ) )/( x - 1 ) = 1/sqrt(A)` then find A

Promotional Banner

Similar Questions

Explore conceptually related problems

If G(x)=-sqrt(25-x) . Then lim_(xrarr1) (G(x)-G(1))/(x-1) has the value

If G(x)=-sqrt(25-x^(2)) ,find the value of lim(x rarr1)(G(x)-G(1))/(x-1)

If f(x)=-sqrt(25-x^(2)) then find lim_(x rarr1)(f(x)-f(1))/(x-1)

Evaluate : lim_( x -> 1 ) ( sqrt(x) - 1 + sqrt( x -1 ) )/( sqrt( x^2 -1 ))

If G(x)=-sqrt(25-x^(2)), then lim_(x rarr1)(G(x)-G(1))/(x-1)is (a) (1)/(24) (b) (1)/(5)(c)-sqrt(24) (d) none of these

Let f(x)=(1)/(x) and g(x)=(1)/(sqrt(x)) . Then,

Evaluate : lim_( x -> 1 ) sqrt( x + 8 )/sqrt(x)

Evaluate : lim_( x -> 0 ) ( sqrt( 1 + x + x^2 ) - x )