Home
Class 11
MATHS
2^(log(sqrt(2))15)=...

`2^(log_(sqrt(2))15)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

log_(3sqrt(2))324

Prove that: log_3log_2log_(sqrt(5))(625)=1

Which of the following numbers are non positive? (A) 5^(log_(11)7)-7(log_(11)5) (B) log_(3)(sqrt(7)-2) (C) log_(7)((1)/(2))^(-1//2) (D) log_(sqrt(2)-1) (sqrt(2)+1)/(sqrt(2)-1)

The value 4^(5log_(4sqrt(2))(3-sqrt(6))-6log_8(sqrt(3)-sqrt(2))) is

If P =3^sqrt(log_(3)2)-2^(sqrt(log_(2)3))and Q=log_(2)log_(3)log_(2)log _(sqrt(3))81, then

The value of log_((sqrt(2)-1))(5sqrt(2)-7) is :

The value of "log"_(2)"log"_(2)"log"_(4) 256 + 2 "log"_(sqrt(2))2 , is

Which of the following when simplified reduces to unity? (log)_(3/2)(log)_4(log)_(sqrt(3))81 (log)_2 6+(log)_2sqrt(2/3) -1/6(log)_(sqrt(3/2))((64)/(27)) (d) (log)_(7/2)(1+2-3-:6)

Solve log_(2)(2sqrt(17-2x))=1 - log_(1//2)(x-1) .

int_0^3(3x+1)/(x^2+9)dx = (pi^)/(12)+log(2sqrt(2)) (b) (pi^)/2+log(2sqrt(2)) (c) (pi^)/6+log(2sqrt(2)) (d) (pi^)/3+log(2sqrt(2))