Home
Class 11
MATHS
Prove that: sin(A+B)+cos(A-B)=(sinA+...

Prove that:
`sin(A+B)+cos(A-B)=(sinA+cosA)(sinB+cosB)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (cos(A-B)+sinA-cos(A+B))/(sin(A+B)+cosA-sin(A-B))=tanA

Prove that (sinA+cosA)^3 = 3(sinA+cosA) - 2 (sin^3A+cos^3A)

Prove that: ("sin"(A-B))/(cos A cosB)+(sin(B-C))/(cos B cos C)+("sin"(C-A))/(cos C cos A)=0

If A+B+C=pi , prove that : sinA cosB cosC +sinB cosC cosA + sinC cosA cosB = sinA sinB sinC .

Using properties of determinant. Prove that |[sinA,cosA,sinA+cosB],[sinB,cosA,sinB+cosB],[sinC,cosA,sinC+cosB]|=0

Prove that: (sin(A+B)-2sinA+sin(A-B))/(cos(A+B)-2cosA+cos(A-B))= tanA

Prove that: sin(A+2B)sinA-sinBsin(2A+B)sinB=sin(A+B)sin(A-B)

Prove that (1+sin2A)/(cos2A)=(cosA+sinA)/(cosA-sinA)=tan((pi)/(4)+A)

Prove that: (1+cosA+sinA)/(1+cosA-sinA)=(1+sinA)/(cosA)

If A+B+C=pi/2 , prove that: sin2A + sin2B+sin2C = 4cosA cosB cosC