Home
Class 11
MATHS
lim(n->oo) nsin(1/n)...

` lim_(n->oo) nsin(1/n)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n->oo) n^(1/n)

f'(0) = lim_(n->oo) nf(1/n) and f(0)=0 Using this, find lim_(n->oo)((n+1)(2/pi)cos^(- 1)(1/n)-n)),|cos^(-1)1/n|

Let f(x)= lim_(n->oo)(sinx)^(2n)

7. lim_(n->oo) (2^(1/n)-1)/(2^(1/n)+1)

Evaluate: lim_(n->oo)sin^n((2pin)/(3n+1)),n in Ndot

lim_(n->oo)sin(x/2^n)/(x/2^n)

Evaluate Lim_(n->oo)n^2 int_(-1/n)^(1/n) (2006sinx+2007cosx) |x|dx

If A=[{:(,1,a),(,0,1):}] then find lim_(n-oo) (1)/(n)A^(n)

Prove that lim_(n->oo)(1+1/n)^n=e

lim_(n->oo)2^(n-1)sin(a/2^n)