Home
Class 11
MATHS
lim(x->oo)sin(1/x)/(1/x)...

`lim_(x->oo)sin(1/x)/(1/x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->oo)[sinx/x]

lim_(x->oo)sinx/x =

lim_(x->oo) (sinx/x) =

Write the value of (lim)_(x->oo)(sin x\ )/x

lim_(n->oo)sin(x/2^n)/(x/2^n)

lim_(x->oo)((1^(1/x) +2^(1/x) +3^(1/x) +...+n^(1/x))/n)^(nx) is equal to

Evaluate the following limit: (lim)_(x->oo)(a^(1//x)-1)x

lim_(x->oo)(1-x+x.e^(1/n))^n

Evaluate: ("lim")_(x->oo)[x(a^(1/x)-1)], a >1

If lim_(n->oo)1/((sin^(-1)x)^("n")+1)=1 ,t h e n find the value of x.