Home
Class 11
MATHS
lim(x->oo)sinx/x=...

`lim_(x->oo)sinx/x`=

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->oo) xsin(2/x)

lim_(x->oo)sin(1/x)/(1/x)

lim_(x->oo)2^xsin(a/2^x)

If alpha in(0,1) and f:R->R and lim_(x->oo)f(x)=0,lim_(x->oo)(f(x)-f(alphax))/x=0, then lim_(x->oo)f(x)/x=lambda where 2lambda+7 is

lim_(n->oo)sin(x/2^n)/(x/2^n)

Evaluate: lim_(x->oo) (x+7sinx)/(-2x+13) using sandwich theorem.

Consider f(x) = lim_(x-oo)(x^n-sinx^n)/(x^n+sinx^n) for x>0,x!=1,f(1)=0 then

Let f(x)= lim_(n->oo)(sinx)^(2n)

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((sinx)/x)^((sinx)/(x-sinx)) is equal to

Evaluate the following limit: lim_(x->oo) (sin(a+x) + sin(a-x) - 2 sin a)/(x sinx))