Home
Class 12
MATHS
int (1+loge x)/x dx...

`int (1+log_e x)/x dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral underset(e^(-1))overset(e^(2))int |(log_(e)x)/(x)|dx is

If a >0 and a!=1 evaluate the following integrals: inte^x\ a^x\ dx (ii) int2^((log)_e x)\ dx

int cos (log_e x)dx is equal to

int " log"_(e) " x dx "

If a >0 and a!=1 evaluate the following integrals: (i) inte^(x\ (log)_e a)\ dx\ (ii) inte^(a\ (log)_e x)\ dx

Write a value of int(log)_e x\ dx

Evaluate the integerals. int (e ^(log x))/(x ) dx on (0,oo).

Evaluate int 5^(log _(e)x)dx

Evaluate: int((log)_(e x)edot(log)_(e^2)edot(log)_(e^3x)e)/x dx

int(tan(1+log x))/(x) dx