Home
Class 11
MATHS
lim(x->0)x^3cos(2/x) =...

`lim_(x->0)x^3cos(2/x)` =

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0)x^(3)"cos"2/x .

lim_(x->0)((1-cos2x)sin5x)/(x^2sin3x)

Evaluate: lim_(x->0) (1-cos2x)/(x^2)

Evaluate the following limit: lim_(x->0)(1-cos2x)/(3tan^2x)

if lim_(x->0)(ptanqx^2-3cos^2x+4)^(1/(3x^2))=e^(5/3)

Let a= lim_(x->0)ln(cos2x)/(3x^2), b=lim_(x->0)(sin^(2)2x)/(x(1-e^x)), c=lim_(x->1)(sqrt(x)-x)/lnx

Evaluate the following limit: (lim)_(x->0)(cos3x-cos7x)/(x^2)

Evaluate the following limit: (lim)_(x->0)(cos3x-cos5x)/(x^2)

Evaluate the following limit: (lim)_(x->0)(1-cos2x)/(cos2x-cos8x)

If f(x) = lim_(n->oo) tan^(-1) (4n^2(1-cos(x/n))) and g(x) = lim_(n->oo) n^2/2 ln cos(2x/n) then lim_(x->0) (e^(-2g(x)) -e^(f(x)))/(x^6) equals