Home
Class 11
MATHS
Find the value of lim(n->oo) (1+2+3+.......

Find the value of` lim_(n->oo) (1+2+3+.......+n)/n^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n->oo) n^(1/n)

Write the value of (lim)_(n->oo)(1+2+3+....+n)/(n^2)\

The value of lim_(n->oo) (1^2 . n+2^2.(n-1)+......+n^2 . 1)/(1^3+2^3+......+n^3) is equal to

lim_(n->oo)(1^2+2^2+3^2+..........+n^2)/n^3

lim_(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

If the value of lim_(n->oo){1/(n+1)+1/(n+2)+.......+1/(6n)} is 'K' then find value of (K - log_e 6)? .

lim(n->oo)(1^2+2^2+3^2+..........+n^2)/n^3

The value of lim_(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

The value of ("lim")_(n->oo)[(n+1)^2 3-(n-1)^2 3] is_____